NAS14B

LOW VOLTAGE POWER SUPPLY MODULE

NAUTICAL ELECTRONIC LABORATORIES LIMITED
bri tantallon. hackett's cove
halifax county, nova scotia. canada
bos 3.0

O
 0
 (

0
()

LIST OF EFFECTIVE PAGES

The list of effective pages lists the status of all pages in this manual. Pages of the original issue are identified by a zero in the Change No. column. Pages subsequently changed are identified by the date of the change number. On a changed page, the text affected by the latest change is indicated by a vertical bar in the margin opposite the changed material.

Original 01 December 1985
Change 1 15 May 1986

Total number of printed sides in this manual is 10 as listed below:

PAGE	$\begin{gathered} \text { CHANGE } \\ \text { No. } \\ \hline \end{gathered}$	DATE	PAGE	$\begin{gathered} \text { CHANGE } \\ \text { No. } \end{gathered}$	DATE
Title	0	01 December 1985	5	1	15 May 1986
Effective (Page 1)	1	15 May 1986	6	1	15 May 1986
Effective (Page 2)	-	Blank	7	1	15 May 1986
-	0	01 Dece mber 1985	8	-	Blank
- 2	0	01 December 1985	9	1	15 May 1986
3	0	01 Dece mber 1985	10	-	Blank
4	0	01 Dece mber 1985			

$$
0
$$

INTRODUCTION

1. The NASI4B low voltage power supply module contains the unregulated +24 volt de and regulated +15 volt de power supplies for Nautel's AMPFET series of transmitters. Trouble shooting and repair of the module is performed on a work bench independent of it's associated transmitter. This document provides the information required for a competent technician to understand the operation of the electrical circuits and the procedures to restore defective modules to a serviceable status; using tools and test equipment normally available at an AM radio station workshop. An alternative to procedures provided in this document is to utilize Nautel's module exchange/repair service facilities.

FACTORY EXCHANGE/REPAIR SERVICE

2. Nautel provides a factory, module exchange/repair service for users of Nautel's AMPFET series of transmitters. Users who do not have repair facilities or who are not able to repair a module may utilize this service for a nominal fee.

MECHANICAL CONFIGURATION

3. The NAS14B low voltage power supply module utilizes a formed, metal chassis. An electrical connector and a guide pin are installed on the rear of the chassis; a stamped panel containing a handle, warning lamp and two test points, is instalied on the front. All electrical components, except the filter capacitor which is mounted on the chassis, are mounted on a metal terminal board. Electrical interconnection between the components on the terminal board and between the terminal board and the remaining components is by soldering to standoff terminals or directly to the component. Refer to figure 3 for the assembly detail.

THEORY OF OPERATION (see figure 2)

4. The NASI4B low voltage power supply module provides unregulated 24 volt de (nominal) and regulated 15 volt de outputs for its associated transmitter.
4.1 A nominal 36 volt ac input is applied to full wave rectifier AlUl thru fuses AlFl and AlF2. The resultant unregulated 24 volts de is smoothed by capacitor Cl. Transients on the ac input are limited to 33 volts at the output of AlUl by zener diode AICRI. This unregulated 24 volts de is applied thru diode AlCR3 to Pl-3, as the associated transmitter's unregulated 24 volt de power source; and through resistor AlR3 to test point TPl, which provides an external monitoring test point.
4.2 The unregulated 24 volts de is also applied thru resistor AlRl to 15 volt de regulator AlU2. The resultant regulated 15 volt de output of A1U2 is applied thru diode AlCR4 to Pl-4, as the associated transmitter's regulated 15 volt dc power source; and through resistor AlR4 to test point TP2, which provides an external monitoring test point. Capacitors AlC2 and AlC3 provide additional filtering of the regulated 15 volt de output.
4.3 If the output of A1U2 exceeds 16 volts dc, current will flow thru resistor A1R2 and zener diode CR2. When this current exceeds a nominal 10 milliamperes, the resultant voltage drop across AlR2 will forward bias thyristor AlQ1 and cause it to turn on. When AlQl is turned on, the input to AlU2 will be clamped to ground potential and the 15 volt dc output of AlU2 will be inhibited. The current flow thru AlR1, as the result of AlQ1 being turned on, will cause fuse Fl and/or F2 to blow. This circuit protects the associated transmitter's 15 vde circuits from overvoltage if A1U2 fails in a short circuit condition. Transmitters that have only one low voltage power supply module will be shut down until the module is repaired or replaced. Transmitters that have more than one low voltage power supply module will continue to operate on the remaining low voltage power supply module(s).
4.4 The regulated 15 volts de output of $\mathrm{AlU2}$ is also applied to the anode of light emitting diode DSI. DSl will turn on when the output of 15 volt de regulator AlU2 is 15 volts dc. When DSl is on, it can be assumed the NASI4B low voltage power supply has ac power applied to it and its unregulated 24 volt de and regulated 15 volt de outputs are being produced.

TROUBLESHOOTING

5. Troubleshooting of NAS14B low voltage power supply modules that are defective or are suspected of being defective consists of performing a visual inspection and then conducting a functional test to isolate the defective components.
5.1 TEST EQUIPMENT AND SPECIAL TOOLS: The test equipment required is listed in table l. There are no special tools required.
5.2 VISUAL INSPECTION: It is recommended that a visual inspection be performed on the low voltage power supply module prior to applying power. Inspect the module for the following:
(a) Inspect all electrical components for evidence of overheating or physical damage.
(b) Verify fuses A1F1 and AlF2 are the correct value and are not defective.
(c) Inspect all solder connections for good mechanical bond and adequate solder.
(d) Verify connector Pl does not contain damaged or loose pins and that it is securely fastened to the chassis.
(e) Verify the guide pin is present and that it is securely fastened.
(f) Verify all wiring insulation is not pinched, frayed, broken or otherwise damaged.
(g) Verify wire strands of wiring conductors are not broken or otherwise damaged.
(h) Verify the chassis and terminal board is free from solder slivers and other conductive foreign objects.
(i) Verify all fastening hardware is securely tightened.
5.3 FUNCTIONAL TEST: A functional test of the low voltage power supply module is the recommended first step in troubleshooting a defective module and also verifies the module is operating within design limits after corrective action has been taken. Modules that meet the requirements of the functional test may be considered to be operating satisfactorily and returned to service.

NOTE
Final testing of the low voltage power supply module is performed with the module installed in its associated transmitter. Instructions are provided in the associated transmitter's instruction manual.
5.3.1 PREPARATION FOR TEST: Prepare the low voltage power supply module for test as follows:
(a) Verify the visual inspection has been completed.
(b) Connect the low voltage power supply module to test setup depicted in figure 1 .
(c) Switch on test setup's 24 volt de power supply and verify its output is 24.0 volts de and it is set to limit the maximum current to 1.0 amperes.
5.3.2 TEST PROCEDURE: Perform a functional test of the NASI4B low voltage power supply module as follows:
(a) Lamp DSl should be turned on.
(b) Connect a digital multimeter between TPl (+) and chassis ground.
(c) Multimeter indication should be 23.0 ± 0.5 volts dc.
(d) Connect a digital multimeter between TP2 (+) and chassis ground.
(e) Multimeter indication should be 15.0 ± 0.3 volts dc.
(f) Momentarily apply and then remove a short circuit between A1U2-1 and A1U2-2.
(g) Multimeter indication should go to and remain at zero volts dc.
(h) Momentarily switch off test setup's 24 volt de power supply and then switch it on.
(i) Multimeter indication should return to 15.0 ± 0.3 volts dc.
(j) Switch off test setup's 24 volt de power supply and connect its positive lead to Pl-2.
(k) Switch on test setup's 24 volt de power supply, verify its output is 24.0 volts de and then repeat steps (a) thru (e).

REPAIR

6. There are no special procedures to be observed when replacing components.

Figure 1 Test Setup
NASl4B (Page 3)
01 December 1985

NASI4B

LOW VOLTAGE POWER SUPPLY MODULE

Table 1-Test Equipment

NOMENCLATURE	PART, MODEL, OR TYPE NUMBER (EQUIVALENTS MAY BE USED)
Digital Multimeter	$31 / 2$ digit, ac and de volts, ohms and amps, $\pm 0.5 \%$ accuracy. Beckman 3010
24 Vde Power Supply	24 Volts dc, rated at a minimum of 1.0 amperes, with current limiting capability of 1.0 amperes. Resistor
Resistor	$500 \mathrm{ohm}, 10$ Watt

Table 2 - Wiring List NASI4B Low Voltage Supply Module

SOURCE	DESTINATION	CODE		SIZE	FUNCTION
XDSl-Cathode	Ground	RAP10	Resistor	1800 ohms	Rl
Pl-1	XFl-1	1	Grey	18	
Pl-2	XFl-3	2	Grey	18	
Pl-3	Al-6	3	Orange	20	
Pl-4	Al-3	4	Red	22	
Pl-6	Cl(-)	5	Black	22	
TP1	Al-4	6	White	22	
TP2	Al-1	7	White	22	
Cl(+)	Al-9	8	Orange	20	
Pl-5	AlU2-3	9	Black	22	
Al-8	XDSl-Anode	10	White	22	

NASl4B
LOW VOLTAGE POWER SUPPLY MODULE

Table 3 NASI4B Low Voltage Power Supply Module Reference Designation Index

Table 4 NAS14B Low Voltage Power Supply Module Quantities Per Unit Index

NAUTEL'S PART NO.	NAME OF PART AND DESCRIPTION	$\begin{aligned} & \text { JAN, MIL } \\ & \text { OR } \\ & \text { MFR PART NO. } \end{aligned}$	$\begin{aligned} & \text { (OEM) } \\ & \text { MFR } \\ & \text { CODE } \end{aligned}$	TOTAL IDENT PARTS
NAS14B	Low Voltage Power Supply	139-5011-2	37338	-
139-5013-1	Low Voltage Plate Assembly	139-5013-1	37338	1
CCD15	Capacitor, Electrolytic, 2200uF, 75 V	500222U075AB2B	00853	1
CCP19	Capacitor, Tantalum, 6.8uF $10 \%, 35 \mathrm{~V}$	CSR13F685KM	56289	1
CCP24	Capacitor, Tantalum, 1.0uF 10\%, 50V	CSR13G105KM	56289	2
FA 25	Fuse Block, 2 Pole, Type 3AG	357002	75915	1
FAl0	Fuse, 3A, 250V, Slo-Blo, Type 3AG	313003	75915	2
JD09	Connector, Plug, 6-pin	P-3306-AB	13150	1
JO19	Jack, Tip, Red, Teflon	450-4355-1-0312	71279	2
QA1 2	Thyristor, Power	2N3228	54590	1
QG31	Diode, Power Rectifier, 3A	1 N5624	89473	
QK1 2	Diode, Light Emitting, Green	5082-4992	50434	
QK25	Socket, LED	PS-200-B	15513	1
QL23	Diode, Zener, 16V, 1.5W 2\%	1N5930C	04713	1
QL35	Diode, Zener, 33V, 5 W	1 N 6283 A	04713	1
RAP05	Resistor, Film, 100 oh ms, $2 \% \mathrm{l} / 2 \mathrm{~W}$	RL20S101G	36002	1
RAP10	Resistor, Film, 1800 ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S182G	36002	1
RAP13	Resistor, Film, 10 K ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S103G	36002	2
RS05	Resistor, Wirewound, 1.0 oh ms, $5 \% \mathrm{l} 5 \mathrm{~W}$	HLM1 5-1.0 Ohms-5\%	35005	1
UC09	IC, Voltage Regulator, +15 Volt, 2%	MC78T15ACK	04713	1
UL27	Diode, Pair Assembly, (+Ve) 400V, 15A	R704	83003	1

Figure 2 Electrical Schematic - NASI4B Low Voltage Power Supply Module

