

NAUTICAL ELECTRONIC LABORATORIES LIMITED

RR1 TANTALLON, HACKETT'S COVE HALIFAX COUNTY, NOVA SCOTIA, CANADA BOJ 3J0

LIST OF EFFECTIVE PAGES

The list of effective pages lists the status of all pages in this manual. Pages of the original issue are identified by a zero in the Change No. column. Pages subsequently changed are identified by the date of the change number. On a changed page, the text affected by the latest change is indicated by a vertical bar in the margin opposite the changed material.

Original 01 December 1985 Change 1 15 May 1986

Total number of printed sides in this manual is 10 as listed below:

PAGE	CHANGE No.	DATE	PAGE	CHANGE No.	DATE
Title Effective (Page 1) Effective (Page 2) 1 2 3 4	0 1 - 0 0 0 0	01 December 1985 15 May 1986 Blank 01 December 1985 01 December 1985 01 December 1985 01 December 1985	5 6 7 8 9 10	1 1 - 1	15 May 1986 15 May 1986 15 May 1986 Blank 15 May 1986 Blank

				de service de la constante de
				and the second
	·			
				And the second s
				()

INTRODUCTION

1. The NAS14B low voltage power supply module contains the unregulated +24 volt de and regulated +15 volt de power supplies for Nautel's AMPFET series of transmitters. Trouble shooting and repair of the module is performed on a work bench independent of it's associated transmitter. This document provides the information required for a competent technician to understand the operation of the electrical circuits and the procedures to restore defective modules to a serviceable status; using tools and test equipment normally available at an AM radio station workshop. An alternative to procedures provided in this document is to utilize Nautel's module exchange/repair service facilities.

FACTORY EXCHANGE/REPAIR SERVICE

2. Nautel provides a factory, module exchange/repair service for users of Nautel's AMPFET series of transmitters. Users who do not have repair facilities or who are not able to repair a module may utilize this service for a nominal fee.

MECHANICAL CONFIGURATION

3. The NAS14B low voltage power supply module utilizes a formed, metal chassis. An electrical connector and a guide pin are installed on the rear of the chassis; a stamped panel containing a handle, warning lamp and two test points, is installed on the front. All electrical components, except the filter capacitor which is mounted on the chassis, are mounted on a metal terminal board. Electrical interconnection between the components on the terminal board and between the terminal board and the remaining components is by soldering to standoff terminals or directly to the component. Refer to figure 3 for the assembly detail.

THEORY OF OPERATION (see figure 2)

- 4. The NAS14B low voltage power supply module provides unregulated 24 volt dc (nominal) and regulated 15 volt dc outputs for its associated transmitter.
- 4.1 A nominal 36 volt ac input is applied to full wave rectifier AlUl thru fuses AlFl and AlF2. The resultant unregulated 24 volts dc is smoothed by capacitor Cl. Transients on the ac input are limited to 33 volts at the output of AlUl by zener diode AlCR1. This unregulated 24 volts dc is applied thru diode AlCR3 to Pl-3, as the associated transmitter's unregulated 24 volt dc power source; and through resistor AlR3 to test point TP1, which provides an external monitoring test point.
- 4.2 The unregulated 24 volts dc is also applied thru resistor A1R1 to 15 volt dc regulator A1U2. The resultant regulated 15 volt dc output of A1U2 is applied thru diode A1CR4 to P1-4, as the associated transmitter's regulated 15 volt dc power source; and through resistor A1R4 to test point TP2, which provides an external monitoring test point. Capacitors A1C2 and A1C3 provide additional filtering of the regulated 15 volt dc output.
- 4.3 If the output of A1U2 exceeds 16 volts dc, current will flow thru resistor A1R2 and zener diode CR2. When this current exceeds a nominal 10 milliamperes, the resultant voltage drop across A1R2 will forward bias thyristor A1Q1 and cause it to turn on. When A1Q1 is turned on, the input to A1U2 will be clamped to ground potential and the 15 volt dc output of A1U2 will be inhibited. The current flow thru A1R1, as the result of A1Q1 being turned on, will cause fuse F1 and/or F2 to blow. This circuit protects the associated transmitter's 15 vdc circuits from overvoltage if A1U2 fails in a short circuit condition. Transmitters that have only one low voltage power supply module will be shut down until the module is repaired or replaced. Transmitters that have more than one low voltage power supply module will continue to operate on the remaining low voltage power supply module(s).

NAS14B (Page 1) 01 December 1985

4.4 The regulated 15 volts dc output of AlU2 is also applied to the anode of light emitting diode DS1. DS1 will turn on when the output of 15 volt dc regulator AlU2 is 15 volts dc. When DS1 is on, it can be assumed the NAS14B low voltage power supply has ac power applied to it and its unregulated 24 volt dc and regulated 15 volt dc outputs are being produced.

TROUBLESHOOTING

- 5. Troubleshooting of NAS14B low voltage power supply modules that are defective or are suspected of being defective consists of performing a visual inspection and then conducting a functional test to isolate the defective components.
- 5.1 TEST EQUIPMENT AND SPECIAL TOOLS: The test equipment required is listed in table 1. There are no special tools required.
- 5.2 VISUAL INSPECTION: It is recommended that a visual inspection be performed on the low voltage power supply module prior to applying power. Inspect the module for the following:
 - (a) Inspect all electrical components for evidence of overheating or physical damage.
 - (b) Verify fuses A1F1 and A1F2 are the correct value and are not defective.
 - (c) Inspect all solder connections for good mechanical bond and adequate solder.
 - (d) Verify connector P1 does not contain damaged or loose pins and that it is securely fastened to the chassis.
 - (e) Verify the guide pin is present and that it is securely fastened.
 - (f) Verify all wiring insulation is not pinched, frayed, broken or otherwise damaged.
 - (g) Verify wire strands of wiring conductors are not broken or otherwise damaged.
 - (h) Verify the chassis and terminal board is free from solder slivers and other conductive foreign objects.
 - (i) Verify all fastening hardware is securely tightened.
- 5.3 FUNCTIONAL TEST: A functional test of the low voltage power supply module is the recommended first step in troubleshooting a defective module and also verifies the module is operating within design limits after corrective action has been taken. Modules that meet the requirements of the functional test may be considered to be operating satisfactorily and returned to service.

NOTE

Final testing of the low voltage power supply module is performed with the module installed in its associated transmitter. Instructions are provided in the associated transmitter's instruction manual.

- 5.3.1 PREPARATION FOR TEST: Prepare the low voltage power supply module for test as follows:
 - (a) Verify the visual inspection has been completed.
 - (b) Connect the low voltage power supply module to test setup depicted in figure 1.
 - (c) Switch on test setup's 24 volt de power supply and verify its output is 24.0 volts de and it is set to limit the maximum current to 1.0 amperes.
- 5.3.2 TEST PROCEDURE: Perform a functional test of the NAS14B low voltage power supply module as follows:
 - (a) Lamp DS1 should be turned on.
 - (b) Connect a digital multimeter between TP1 (+) and chassis ground.
 - (c) Multimeter indication should be 23.0 +0.5 volts dc.
 - (d) Connect a digital multimeter between TP2 (+) and chassis ground.
 - (e) Multimeter indication should be 15.0 ± 0.3 volts dc.
 - (f) Momentarily apply and then remove a short circuit between A1U2-1 and A1U2-2.
 - (g) Multimeter indication should go to and remain at zero volts dc.
 - (h) Momentarily switch off test setup's 24 volt dc power supply and then switch it on.
 - (i) Multimeter indication should return to 15.0 ±0.3 volts dc.
 - (j) Switch off test setup's 24 volt dc power supply and connect its positive lead to P1-2.
 - (k) Switch on test setup's 24 volt dc power supply, verify its output is 24.0 volts dc and then repeat steps (a) thru (e).

REPAIR

6. There are no special procedures to be observed when replacing components.

Figure 1 Test Setup NAS14B (Page 3) 01 December 1985

Table 1 - Test Equipment

NOMENCLATURE	PART, MODEL, OR TYPE NUMBER (EQUIVALENTS MAY BE USED)				
Digital Multimeter	3 1/2 digit, ac and dc volts, ohms and amps, ±0.5% accuracy. Beckman 3010				
24 Vdc Power Supply	24 Volts dc, rated at a minimum of 1.0 amperes, with current limiting capability of 1.0 amperes.				
Resistor	100 ohm, 10 Watt				
Resistor	50 ohm, 10 Watt				

Table 2 - Wiring List NAS14B Low Voltage Supply Module

SOURCE	DESTINATION	CODE		SIZE	FUNCTION
XDS1-Cathode P1-1 P1-2 P1-3 P1-4 P1-6 TP1 TP2 C1(+) P1-5 A1-8	Ground XF1-1 XF1-3 A1-6 A1-3 C1(-) A1-4 A1-1 A1-9 A1U2-3 XDS1-Anode	RAP10 1 2 3 4 5 6 7 8 9 10	Resistor Grey Grey Orange Red Black White White Orange Black White	1800 ohms 18 18 20 22 22 22 22 22 22 22 22 22	R1

Table 3 NAS14B Low Voltage Power Supply Module Reference Designation Index

REF DES	NAME OF PART AND DESCRIPTION	NAUTEL'S PART NO.	JAN, MIL OR MFR PART NO.			
A1 A1C1 A1C2 A1C3 A1CR1 A1CR2 A1CR3 A1CR4 A1F1 A1F2 A1Q1 A1R1 A1R2 A1R3 A1R4 A1U1 A1U2 A1XF1 C1 DS1 P1 R1 TP1 TP2 XDS1	Low Voltage Power Supply Low Voltage Plate Assembly Capacitor, Tantalum, 1.0uF 10%, 50V Capacitor, Tantalum, 1.0uF 10%, 50V Capacitor, Tantalum, 6.8uF 10%, 35V Diode, Zener, 33V, 5W Diode, Zener, 16V, 1.5W 2% Diode, Power Rectifier, 3A Diode, Power Rectifier, 3A Fuse, 3A, 250V, Slo-Blo, Type 3AG Fuse, 3A, 250V, Slo-Blo, Type 3AG Fuse, 3A, 250V, Slo-Blo, Type 3AG Thyristor, Power Resistor, Wirewound, 1.0 ohms, 5% 15W Resistor, Film, 100 ohms, 2% 1/2W Resistor, Film, 10K ohms, 2% 1/2W Resistor, Film, 10K ohms, 2% 1/2W Diode, Pair Assembly, (+Ve) 400V, 15A IC, Voltage Regulator, +15 Volt, 2% Fuse Block, 2 Pole, Type 3AG Capacitor, Electrolytic, 2200uF, 75V Diode, Light Emitting, Green Connector, Plug, 6-pin Resistor, Film, 1800 ohms, 2% 1/2W Jack, Tip, Red, Teflon Jack, Tip, Red, Teflon Socket, LED	NAS14B 139-5013-1 CCP24 CCP24 CCP19 QL35 QL23 QG31 FA10 FA10 QA12 RS05 RAP05 RAP13 UL27 UC09 FA25 CCD15 QK12 JD09 RAP10 JO19 JO19 QK25	139-5011-2 139-5013-1 CSR13G105KM CSR13F685KM 1N6283A 1N5930C 1N5624 1N5624 313003 2N3228 HLM15-1.0 Oh ms-5 % RL20S101G RL20S103G RT20S103G RT04 MC78T15ACK 357002 500222U075AB2B 5082-4992 P-3306-AB RL20S182G 450-4355-1-0312 450-4355-1-0312 PS-200-B			

Table 4 NAS14B Low Voltage Power Supply Module Quantities Per Unit Index

1 80	ole 4 NAS14B Low Voltage Power Supply Mod	ime Quantities Per Unit	ındex	
NAUTEL'S PART NO.	NAME OF PART AND DESCRIPTION	JAN, MIL OR MFR PART NO.	(OEM) MFR CODE	TOTAL IDENT PARTS
NAS14B 139-5013-1 CCD15 CCP19 CCP24 FA25 FA10 JD09 JO19 QA12 QK31 QK12 QK25 QL23 QL35 RAP05 RAP10 RAP13 RS05 UC09 UL27	Low Voltage Power Supply Low Voltage Plate Assembly Capacitor, Electrolytic, 2200uF, 75V Capacitor, Tantalu m, 6.8uF 10%, 35V Capacitor, Tantalu m, 1.0uF 10%, 50V Fuse Block, 2 Pole, Type 3AG Fuse, 3A, 250V, Slo-Blo, Type 3AG Connector, Plug, 6-pin Jack, Tip, Red, Teflon Thyristor, Power Diode, Power Rectifier, 3A Diode, Light Emitting, Green Socket, LED Diode, Zener, 16V, 1.5W 2% Diode, Zener, 33V, 5W Resistor, Film, 100 ohms, 2% 1/2W Resistor, Film, 10K ohms, 2% 1/2W Resistor, Wirewound, 1.0 ohms, 5% 15W IC, Voltage Regulator, +15 Volt, 2% Diode, Pair Assembly, (+Ve) 400V, 15A	139-5011-2 139-5013-1 500222U075AB2B CSR13F685KM CSR13G105KM 357002 313003 P-3306-AB 450-4355-1-0312 2N3228 1N5624 5082-4992 PS-200-B 1N5930C 1N6283A RL20S101G RL20S182G RL20S103G HLM15-1.0 Ohms-5% MC78T15ACK R704	37338 37338 00853 56289 56289 75915 75915 13150 71279 54590 89473 50434 15513 04713 36002 36002 35005 04713 83003	

Figure 2 Electrical Schematic - NAS14B Low Voltage Power Supply Module

Figure 3 Assembly Detail - NAS14B Low Voltage Power Supply Module