NAS13 RECTIFIER/REGULATOR MODULE

nautical electronic laboratories limited
RRI TANTALLON. HACKETT'S COVE
HALIFAX COUNTY. NOVA SCOTIA, CANADA

$$
0
$$

O
()

O

$$
(>)
$$

($)$

IN TRODUCTION

NASI 3 A rectifier/regulator modules utilize a light emitting diode instead of an incandescent lamp as their indicating lamp.

INTERCHANGEABILITY

The NAS13A and NAS13 (all variations) rectifier/regulator modules are functionally identical and they are fully interchangeable.

DIFFERENCES

The following changes to the NAS13 rectifier/regulator module appendix are reguired to support the NASI3A variation.

At table 1-2 - wiring list
Delete:
Al-B
DS1-1
26 White
22

Add:

Al-B	TT-1	26	White	22	
TT-1	XDS1 Anode	RAP09	Resistor	1000 Ohms	R2
XDS Cathode	Ground	-	Black	22	

At table 1-3 - Reference Designation Index
Delete:
DS1 Lamp, Incandescent, Amber, 18V, 0.026A BAP08 300-1-HM631 55292
Add:

DS1	Diode, Light Emitting, Amber	QK14	5082-4592	50434
R2	Resistor, Film, 1000 ohms, 2% 1/2W	RAP09	RL20S102G	36002
XDS1	Socket, LED	QK25	PS-200-B	15513

At table 1-4-Quantities Per Unit Index
Delete:
BAP08 Lamp, Incandescent, Amber, 18V, 0.026A 300-1-HM631 55292 1

Add:

QK14	Diode, Light Emitting, Amber	$5082-4592$	50434	1
QK25	Socket, LED	PS-200-B	15513	1
RAP09	Resistor, Film, 1000 ohms, 2% 1/2W	RL20S102G	36002	1

At figure 2 - Electrical Schematic
Change circuit for DSl as shown in figure 1 of this difference data sheet.

NAS13

NASl3A

Figure 1 NASI3/NASl3A Electrical Schematic Differences

At figure 4 - Assembly Detail
Add resistor Rl to assembly detail as shown in figure 2 of this difference data sheet.

NAS13

NASl3A

Figure 2 NASl3/NAS13A Assembly Detail Differences
NASl 3 Difference Data (Page 2)
01 September 1983

LIST OF EFFECTIVE PAGES

The list of effective pages lists the status of all pages in this manual. Pages of the original issue are identified by a zero in the Change No. column. Pages subsequently changed are identified by the date of the change number. On a changed page, the text affected by the latest change is indicated by a vertical bar in the margin opposite the changed material.

Original 15 June 1982

Total number of printed sides in this manual is 12 as listed below:

INTRODUCTION

1. The following information on the NASl3 rectifier/regulator module is provided to allow a competent technican to troubleshoot and repair a defective module using tools and test equipment normally available at an AM radio station workshop. An alternative to these procedures is to utilize Nautel's module exchange/repair service facilities.
1.1 Bench testing procedures are provided which enable fault isolation to be carried out with the module removed from its associated transmitter. This allows the transmitter to operate normally when the defective modulator is replaced by a spare; or at a reduced output level if no spare module is available, while the module is being repaired.
1.2 Parts lists, wiring lists, electrical schematic diagrams and mechanical layout drawings for the NASI3 rectifier/regulator module are included in this appendix.

MECHANICAL CONFIGURATION

2. Mechanical configuration of the NASI3 rectifier/regulator module is shown in figures 3 and 4.

THEORY

3. The function of the NASl3 rectifier/regulator module, as its name implies, is twofold:
(a) Rectification of the nominal three phase, 55 volt phase-to-phase ac input by a three-phase bridge to provide a nominal -79 volts dc.
(b) Regulation of the output voltage against a high input ac voltage and/or surges on the ac input.
3.1 Rectification is achieved by the full wave bridge consisting of rectifiers CR1, CR2 and CR3 on one side and thyristors Q1, Q2 and Q3 on the other side of the bridge network. Fuses F1, F2 and F3 protect the rectifier bridge components against excessive load current. The outputs on Pl-1, thru Pl-4 are normally joined externally to the module to a choke which, in turn, feeds the storage capacitors of the NASM1 modulator module.
3.2 Regulation is achieved by gating thyristors Q1 thru Q3 off when the output voltage exceeds a preset value. Control voltages for the gates of Q1 thru Q3 are generated on printed circuit board Al of the rectifier/regulator. This regulator circuit operates off a +15 volt de regulated power supply which is fed to the circuit via a $1 / 2-\mathrm{amp}$ fuse F 4 , an $85^{\circ} \mathrm{C}$ manually reset thermal switch and rectifier/regulator on/off switch Sl . When +15 volts is applied to assembly A1, AIQ3 is immediately turned on which, in turn, switches on AlQ4, and allows a single phase, full wave rectified current to flow via R1, A1Q4 and CR4 to the output on P1-1. This limits the inrush current to the associated modulator's storage capacitors, and in normal operation allows the magnitude of the voltage on Pl-1 to increase slowly. While the magnitude of the negative voltage is low (between zero and -50 volts) AlQ2 is turned on via the resistive network R6, R7, R9 and R10. At a nominal -55 volts AlQ2 will turn off as the voltage on its base becomes less than +0.5 volts. This allows AlQ1, which was clamped off via A1Q2, to be turned on via the resistive network R4, R5, R6 and R7. Q4, which has been held off by AlR3, will then turn on and apply a gating voltage to thyristors Q1 thru Q3 via diodes AlCR1, AlCR2 and AlCR3. This gating voltage will remain on the thyristors until such time as the magnitude
of the voltage on P1-1 becomes large enough to reduce the voltage on the base of A1Q1 below its turn-on threshold. The thyristors will remain off to allow the output voltage to drop in level to where AIQl is again turned on, thus providing regulation of the output voltage to a preset level determined by the setting of variable resistor AlR4. Adjustment of this regulation voltage may be made over a nominal range of -70 to -75 volts dc.
3.3 Whenever Q4 is off and +15 volts is applied via S1, DSl will be turned on. DS1 provides an indication that the regulator is active; it does not indicate whether or not the module is functional.

FUNCTIONAL TEST

4. Functional testing of the rectifier/regulator module is part of the overall transmitter calibration procedure (see section 5 of the transmitter manual). Should a faulty rectifier/regulator be indicated by these tests, it should be removed from the transmitter for fault isolation and repair.

BENCH TESTING

5. Bench testing of the NASl3 rectifier/regulator module is done by checking individual circuit functions independently as the normal input voltages and output load present in the transmitter are not likely to be available for bench testing. Test the module using the following procedures:
(a) Connect NAS13 rectifier/regulator module to test setup as shown in figure 1 . (Switch Sl should be off).
(b) Apply lead labelled (B) to P1-1.
(c) Adjust zero to -75 volt power supply to -40 volts. Apply lead labelled (A) to P1-7.
(d) Check input current is zero.
(e) Switch Sl on. Check input current goes to $260 \pm 20 \mathrm{~mA}$, and DSl is on.
(f) Change lead (B) to P1-4. Ground base of A1Q2 at junction of R9 and R10. Check input current goes to $400 \pm 40 \mathrm{~mA}$ and DSl is off. Remove ground at base of AlQ2.
(g) Change lead (A) to P1-9 and lead (B) to P1-2. Check input current is zero.
(h) Ground base of AlQ2. Check input current goes to $400 \pm 40 \mathrm{~mA}$. Remove ground at base of A1Q2.
(i) Change lead (A) to P1-11 and lead (B) to Pl-3. Check input current is zero.
(j) Ground base of AlQ2. Check input current goes to $400 \pm 40 \mathrm{~mA}$. Remove ground at base of AlQ2.
(k) Change lead (A) to P1-7 and disconnect lead (B). Check DS1 is on.
(1) Increase magnitude of zero to -75 volt power supply output until DSl turns off. Check voltage is 53 ± 3 volts.
(m) Continue to increase negative voltage input to -72.5 . Adjust AlR4 until DSI just turns on.
(n) Disconnect NASI3 rectifier/regulator module from test setup. Using multimeter (ohms), check operation of rectifiers CR1, CR2, CR3 and CR4.

REPAIR
6. Due to the nature of the high power and high current devices used in the NASl3 rectifier/regulator module, special precautions must be taken when making repairs to these modules.
6.1 FUSE REPLACEMENT: Fuses F1, F2 and F3 are special fast-acting 40 amp fuses designed to protect semiconductor devices. A special protective plexiglass cover is mounted over fuses F1, F3 and thyristors Q1, Q2, Q3. This cover is designed to prevent accidental shorting of the 55 volt, high current, ac supply to these devices and to provide mechancial protection for cathode and gate terminals of the thyristors. It is essential to ensure this plexiglass cover is in place before attempting to insert one of these modules into a transmitter cabinet.
6.1.2 When replacing a fuse, loosen nuts holding the fuse in place, swing the fuse clear of the mounting bolt and remove. Insert new fuse ensuring the fuse terminals are between a flat washer and a solder lug, or between two flat washers. Tighten securing nuts firmly to ensure the lock washer is functioning.
6.2 REPAIR OF ASSEMBLY Al: To replace a component on printed circuit board assembly A1, remove two nuts holding the board in place. The board may then be raised and folded back on its leads to allow removal and replacement of any component. When remounting the board in position, care must be taken to prevent pinching of leads that run between the board and main chassis.
6.3 REPLACEMENT OF THYRISTORS Q1, Q2 OR Q3: Cathode and gate terminals of these devices require special precautions when handling in order to prevent cracking the header seal of these terminals. Do not attempt to remove these components until leads have been carefully unsoldered. When mounting the new device, to ensure good terminal contact is made via mica insulating washers without damaging washers. Hold body of the device from turning with spin-tight tool while tightening the retaining nut to a torque of from 25 to 30 inch-pounds. After device is securely mounted, reconnect cathode and gate terminals taking care not to place any excessive mechanical stress on them.
6.4 REPLACEMENT OF COMPONENTS ON THE RECTIFIER PLATE ASSEMBLY: thyristors Q1 thru Q3 may be replaced without removing this assembly (see above). However, to replace CR1 thru CR4, S2 and Q4, it is necessary to remove this assembly from the main chassis. To prevent damage to other components on the assembly, unsolder all leads and header terminals of Q1 thru Q3 and CR1 thru CR4 before removing the assembly. Use appropriate care not to place mechanical stresses on these terminals.

Figure 1-Test Setup

Table 1-Test Equipment

NOMENCLATURE	PART, MODEL, OR TYPE NUMBER (EQUIVALENTS MAY BE USED)
Digital Multimeter	$31 / 2$ digit, ac and de volts, ohms and amps, $\pm 0.5 \%$ accuracy Beckman 3010
15 Vdc Power Supply	15 Volts 1 Amp
Variable dc Power Supply	$0-100$ Volts $1 / 2$ Amp
Resistor	100 ohms, 20 Watts

Table 2-Wiring List NASl3 Rectifier Regulator Module

SOURCE	DESTINATION	CODE		SIZE	FUNCTION
P1-1	CR4-Anode	1	White	14	
P1-2	Q1-Anode	2	White	14	
P1-3	Q2-Anode	3	White	14	
P1-4	Q3-Anode	4	White	14	
P1-5	F4-1	5	Red	22	
P1-6	Al-C	6	Black	22	
-	-	7	Not Used		
-	-	8	Not Used		
-	-	9	Not Used		
-	-	10	Not Used		
-	-	11	Not Used		
-	-	12	Not Used		
F1-2	CR3-Anode	13	White	14	
F3-2	CR2-Anode	14	White	14	
-	-	15	Not Used		
F2-2	CR1-Anode	16	White	14	
S1-2	Al-A	17	Red	22	
Al-B	Q4-Emitter	18	White	22	
Al-D	Q4-Base	19	White	22	
Al-E	Q4-Collector	20	White	22	
Al-H	Q2-Gate	21	White	22	
Al-J	Q3-Gate	22	White	22	
Al-K	CR4-Anode	23	White	22	
Al-L	R1-2	24	White	22	
A1-TP1	TP1	25	White	22	
Al-B	DS1-1	26	White	22	
F4-2	S2-1	27	Red	22	
S2-2	Sl-1	28	Red	22	
P1-13	Ground	-	Black	14	Jumper
P1-14	Ground	-	Black	14	Jumper
P1-15	Ground	-	Black	14	Jumper
P1-16	Ground	-	Black	14	Jumper
P1-7	F1-1	-	White	16	Jumper
Pl-8	F1-1	-	White	16	Jumper
Pl-9	F2-1	-	White	16	Jumper
P1-10	F2-1	-	White	16	Jumper
P1-11	F3-1	-	White	16	Jumper
P1-12	F3-1	-	White	16	Jumper
F1-2	Q3-Cathode	-	-	16	Jumper
F3-2	Q2 Cathode	-	-	16	Jumper
F2-2	Q1-Cathode	-	White	16	Jumper
CR3-Anode	R1-1	-	-	22	
Al-F	Q1-Gate	-	-	22	Jumper

Table 3 NASI3 Rectifier/Regulator Module Reference Designation Index

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	NAME OF PART AND DESCRIPTION	NAUTEL'S PART NO.	$\begin{gathered} \text { JAN, MIL } \\ \text { OR } \\ \text { MFR PART NO. } \end{gathered}$	$\begin{aligned} & \text { (OEM) } \\ & \text { MFR } \\ & \text { CODE } \end{aligned}$
-	Rectifier/Regulator Module	NAS13	139-5000	37338
AI	Regulator PCB	139-5006	139-5006	37338
AlCl	Capacitor, Ceramic, $0.01 \mathrm{uF} 10 \%$, 100V	CCG04	CKR05BX103KL	56289
AlC2	Capacitor, Ceramic, 0.22 uF 10\%, 50V	CCG08	CKR06BX224KL	56289
AlC3	Capacitor, Ceramic, $0.1 \mathrm{uF} 10 \%, 100 \mathrm{~V}$	CCG07	CKR06BX104KL	56289
AlC4	Capacitor, Ceramic, 0.1uF 10\%, 100V	CCG07	CKR06BX104KL	56289
AICR 1	Diode	QK35	1 N4246	12969
AlCR2	Diode	QK35	1N4246	12969
AlCR3	Diode	QK35	1N4246	12969
AlQ 1	Transistor, NPN	QA35	2N930	04713
AlQ2	Transistor, NPN	QAP06	2N2222	04713
AlQ3	Transistor, PNP	QB11	2N5416	04713
AlQ4	Thrysistor	QB15	2N2326	04713
AlR01	Resistor, Film, 560 ohms, 2% 1/2W	RAP08	RL20S561G	36002
AlR02	Resistor, Film, 560 ohms, 2% 1/2W	RAP08	RL20S561G	36002
AlR03	Resistor, Film, 33K ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP 15	RL20S333G	36002
AlR04	Resistor, Variable, 10K ohms, 1/2W	RW27	$63 \times 103 \mathrm{~T} 000$	02111
AlR05	Resistor, Film, 47 K ohms, $2 \% 1 / 2 \mathrm{~W}$	RD15	RL20S473G	36002
AlR06	Resistor, Film, 100K ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP17	RL20S104G	36002
AlR07	Resistor, Film, 150K ohms, $2 \% 1 / 2 \mathrm{~W}$	RD21	RL20S154G	36002
AlR08	Resistor, Film, 10 K ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP 13	RL20S103G	36002
AlR09	Resistor, Film, 330K ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP19	RL20S334G	36002
AlR10	Resistor, Film, 470K ohms, 2% 1/2W	RD27	RL20S474G	36002
AlR11	Resistor, Film, 10K ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP 13	RL20S103G	36002
AlR12	Resistor, Film, 1000 ohms, $2 \% 1 / 2 \mathrm{~W}$	RAPO9	RL20S102G	36002
Cl	Capacitor, Tantalum, 1.0uF 50 V	CCP24	CSR13G705KM	56289
C2	Capacitor, Tantalum, 1.0uF 50 V	CCP24	CSR13G105KM	56289
C3	Capacitor, Tantalum, 1.0uF 50V	CCP24	CSRI3G105KM	56289
CR1	Diode	QK17	1N1187A	04713
CR2	Diode	QK17	1N1187A	04713
CR3	Diode	QK17	1N1187A	04713
CR4	Diode	QK17	1N1187A	04713
DS1	Lamp, Incandescent, Amber 18V, 0.026A	BAP08	300-7-HM631	55292
Fl	Fuse, 40 Amp, 130 V	FC04	ANN40	71400
F2	Fuse, $40 \mathrm{Amp}, 130 \mathrm{~V}$	FCO4	ANN40	71400
F3	Fuse, 40 Amp , 130 V	FC04	ANN40	71400
F4	Fuse, 1/2 Amp, Slow Blow	FB13	MDL-250V-1/2A	71400
L1	Toroid, Coated	LX16	11-660B	33062
P1	Connector, Plug, 16-pin	J010	P3-5416-SB	13150
Q1	Thyristor, Power	QB14	MCR64-5	04713
Q2	Thyristor, Power	QB14	MCR64-5	04713
Q3	Thyristor, Power QB4O	QB14	MCR64-5 , N6:213	04713
Q4	Transistor, PNP \quad QB4O \rightarrow	QB10	2N6425 2-5 Ohms-5\%	04713 35005
R1	Resistor, Wirewound, 47 ohms, 5%, 15W	RS24	HLM15-47 Ohms-5\%	35005
S1	Switch, Toggle, IPST	SA26	MSTE-1060	15605
S2	Thermostat $80^{\circ} \mathrm{C}$	SC17	2455RN-87	14604
TP1	Jack, Tip, Violet CNL.	J020	450-4355-1-0317	71279
XF4	Fuse Block, 1-pole	FA26	357001	75915

Table 4 NAS13 Rectifier/Regulator Module Quantities Per Unit Index

NAUTEL'S PART NO.	NAME OF PART AND DESCRIPTION	$\begin{aligned} & \text { JAN, MIL } \\ & \text { OR } \\ & \text { MFR PART NO. } \end{aligned}$	$\begin{aligned} & \text { (OEM) } \\ & \text { MFR } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { IDENT } \\ & \text { PARTS } \end{aligned}$
NAS13	Rectifier/Regulator Module	139-5000	37338	REF
139-5006	Regulator PCB	139-5006	37338	1
BAP08	Lamp, Incandescent, Amber 18V, 0.026A	300-1-HM631	55292	1
CCG04	Capacitor, Ceramic, 0.01uF 10\%, 100V	CKR05Bx103KL	56289	1
CCG07	Capacitor, Ceramic, 0.1 uF $10 \%, 100 \mathrm{~V}$	CKR06BX104KL	56289	2
CCG08	Capacitor, Ceramic, $0.22 \mathrm{uF} 10 \%$, 50 V	CKR06BX224KL	56289	1
CCP24	Capacitor, Tantalum, 1.0uF 50V	CSR13G105KM	56289	
FA26	Fuse Block, 1-pole	357001	75915	I
FB13	Fuse, 1/2 Amp, Slow Blow	MDL-250V-1/2A	71400	1
FCO4	Fuse, $40 \mathrm{Amp}, 130 \mathrm{~V}$	ANN40	71400	3
J010	Connector, Plug, 16-pin	P3-5416-SB	13150	1
J020	Jack, Tip, Violet	450-4355-1-0317	71279	1
LX16	Toroid, Coated	11-660B	33062	1
QA35	Transistor, NPN	2N930	04713	1
QAP06	Transistor, NPN CN 2863	2N2222 863	04713	I
QB10	Transistor, PNP	2N6425 2N2863	04713	1
QB11	Transistor, PNP	2N5416	04713	1
QB14	Thyristor, Power	MCR64-5	04713	3
QB15	Thrysistor	2N2326	04713	1
QK17	Diode	1N1187A	04713	4
QK35	Diode	1N4246	12969	3
RAP08	Resistor, Film, 560 ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S561G	36002	2
RAP09	Resistor, Film, 1000 ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S102G	36002	1
RAP 13	Resistor, Film, 10K ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S103G	36002	2
RAP15	Resistor, Film, 33 K ohms, $2 \% \mathrm{l} / 2 \mathrm{~W}$	RL20S333G	36002	1
RAP 17	Resistor, Film, l00K ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S104G	36002	1
RAP19	Resistor, Film, 330K ohms, 2% 1/2W	RL20S334G	36002	1
RD15	Resistor, Film, 47K ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S473G	36002	1
RD21	Resistor, Film, 150K ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S154G	36002	1
RD27	Resistor, Film, 470K ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S474G	36002	1
RS24	Resistor, Wirewound, 47 ohms, 5\%, 15W	HLM15-47 Ohms-5\%	35005	1
RW27	Resistor, Variable, 10K ohms, 1/2W	63X 103 T 000	02111	1
SA26	Switch, Toggle, IPST	MSTE-106D	15605	,
SC17	Thermostat $80^{\circ} \mathrm{C}$	2455RN-87	14604	1

Figure 2 Electrical Schematic - NASI3 Rectifier/Regulator Module

Figure 3 NASI3 Rectifier/Regulator Module

