NAPE12 \& NAPE12/1 RF DRIVER MODULE

NAUTICAL ELECTRONIC LABORATORIES LIMITED
RRI TANTALLON. HACKETt'S COVE
hallfax county. nova scotia, canada
BOJ 3 Jo
(C) Copytight ig83 nautele all rights reserved.

O
 0

()

LIST OF EFFECTIVE PAGES

The list of effective pages lists the status of all pages in this manual. Pages of the original issue are identified by a zero in the Change No. column. Pages subsequently changed are identified by the date of the change number. On a changed page, the text affected by the latest change is indicated by a vertical bar in the margin opposite the changed material.

> Original 15 May 1983
> Change 1. . . . 15 October 1983

Total number of printed sides in this manual is 17 as listed below:

INTRODUCTION

1. The NAPE12 rf driver module contains the rf oscillator and rf drive stage for Nautel's AMPFET series of transmitters. There are minor variations of the rf driver module to accommodate the different power levels of their associated transmitters. The variation that is applicable to a specific transmitter is identified in the instruction manual for that transmitter. The variations are identified by a (/\#) after the NAPEl2 identifier. Trouble shooting and repair of the module is performed on a work bench independent of it's associated transmitter. This document provides the information required for a competent technician to understand the operation of the electrical circuits and the procedures to restore defective modules to a serviceable status; using tools and test equipment normally available at an AM radio station workshop. An alternative to procedures provided in this document is to utilize Nautel's module exchange/repair service facilities.

FACTORY EXCHANGE/REPAIR SERVICE

2. Nautel provides a factory, module exchange/repair service for users of Nautel's AMPFET series of transmitters. Users who do not have repair facilities or who are not able to repair a module may utilize this service for a nominal fee.

MECHANICAL CONFIGURATION

3. The NAPE12 rf driver utilizes a formed, metal box as the module chassis. An electrical connector and a guide pin are installed on the rear of the module and a stamped panel containing a handle, three test points and a frequency adjustment access hole is installed on the front. The remaining electrical components are installed on removeable assemblies. The rf oscillator components are mounted on a printed circuit board (A2) and are interconnected by the circuit board's printed pattern. Extenal wiring is connected by soldering to standoff terminals on the circuit board. The rf drive components are mounted on standoff terminals on a metal plate (Al). Electrical interconnection of the rf drive components, where applicable, and between the assemblies is by wiring which is soldered to the standoff terminals. Refer to figure 4 for the assembly detail of the rf driver module.

THEORY OF OPERATION

4.

The NAPEl2 rf driver module generates the rf carrier frequency and provides the rf drive for its associated transmitter. Refer to figure 3 for the electrical schematic.
4.1 RF CARRIER OSCILLATOR: Transistor A2Q1, crystal A2Y1 and their associated components form an extremely stable, crystal contolled oscillator at two (frequencies above 1.0 MHz) or four (frequencies below 1.0 MHz) times the rf carrier frequency. The desired stability of $\pm 5 \mathrm{ppm}$ over the operating temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$ is ensured by selecting a crystal frequency which is between 2.0 MHz and 4.0 MHz . Transistor A2Q2 and it's associated compents form a buffer amplifier which provides a buffered rf oscillator output to the frequency divider. When a ground potential 'rf drive enable' signal is applied to $\mathrm{Pl}-1$, dual ' D ' flip-flop A2U1 divides the oscillator rf output by two or by four, dependent on which link is installed, and provides a square wave at the rf carrier frequency to the complimentary emitter-follower formed by transistors A2Q3 and A2Q4. When the 'rf drive enable' (ground) signal is removed, flip-flop A2U1A is maintained in it's reset state; the rf oscillator's output will not be divided and the rf oscillator's output will be effectively inhibited. The output of complimentary emitter-follower A2Q3/A2Q4 is applied thru capacitor A2C7 to rf drive input transformer AlTl and thru resistor A2R1l to test point TPl on the front panel. Variable capacitor A2C4, which is accessible thru the front panel, provides oscillator fine tuning. When an 'inhibit' (ground) signal is applied to P1-6, flip-flop A2U1A is maintained in its reset state; the rf oscillator's output will not be divided and its output will be effectively inhibited.
4.2 RF DRIVE: The rf drive input, which is a square wave at the carrier frequency, is applied to transformer AlTl. Transformer AlTl is a $1: 1$ coupling transformer that has two sets of identical secondary windings. One end of each secondary winding is connected to the gate and the other end to the source of a power MOSFET (AlQ1 and AIQ2). Power MOSFETs AlQ1 and AlQ2 are connected in a push-pull configuration with the phasing of their inputs determining which one is turned on. When the gate of AlQ2 goes positive, the gate of AlQl will go negative. AlQ2 will turn on and A1Q1 will be turned off. When AlQ2 is turned on, -72 volts de is applied thru fuse AlF2, resistor AlR1, inductor AlL2, resistor AlR3, the source/drain junction of power MOSFET AlQ2 to the 'rf drive' output at Pl-3. During the next half cycle, the gate of AlQ1 will go positive and the gate of AlQ2 will go negative, causing AlQ1 to turn on and AlQ2 to turn off. A ground will be applied to Pl-3 thru the drain/source junction of AlQ1. The resultant 'rf drive' output on P1-3 will be a 72 volt peak-to-peak square wave at the rf carrier frequency. Transient suppression and decoupling of the -72 volts dc is provided by capacitors C1, C2, C3, C4, C5; diodes CR1, CR2; inductor L1; resistors R1 and R3.

TROUBLESHOOTING

5. Troubleshooting of rf driver modules that are defective or are suspected of being defective consists of performing a visual inspection and then conducting a functional test to isolate the defective components.
5.1 TEST EQUIPMENT AND SPECIAL TOOLS: The test equipment required is listed in table 1. There are no special tools required.
5.2 VISUAL INSPECTION: It is recommended that a visual inspection be performed on the rf driver module prior to applying power. Inspect the module for the following:
(a) Inspect all electrical components for evidence of overheating or physical damage.
(b) Verify fuses AlFl and AlF2 are the correct value and are not defective.
(c) Verify the frequency marked on crystal A2Yl is between 2.0 MHz and 4.0 MHz , is the desired frequency and the appropriate divide-by-two or divide-by-four link is installed.
(d) Inspect all solder connections for good mechanical bond and adequate solder.
(e) Verify connector Pl does not contain damaged or loose pins and that it is securely fastened to its bracket.
(f) Verify the guide pin is present and that it is securely fastened.
(g) Verify all wiring insulation is not pinched, frayed, broken or otherwise damaged.
(h) Verify wire strands of wiring conductors are not broken or otherwise damaged.
(i) Verify the leads of power MOSFET AlQl which protrude thru the metal plate are not shorting to the plate and the protective plastic sleeve over the gate and source leads is present and is not damaged.
(j) Verify the chassis is free from solder slivers and other conductive foreign objects; paying particular attention to areas under the leads of components mounted on insulated standoff terminals on assembly A2's metal plate.
(k) Verify all fastening hardware is securely tightened.
5.3 FUNCTIONAL TEST: Functional testing of the rf driver module is the recommended first step in troubleshooting a defective module and also verifies the module is operating within design limits after corrective action has been taken. Modules that meet the requirements of the functional test may be considered to be operating satisfactorily and returned to service.

NOTE
Final testing and adjustment of the rf driver module is performed with the module installed in the transmitter it will be used in. Instructions are provided in the associated transmitter's instruction manual.
(a) Verify the visual inspection has been completed.
(b) Connect the NAPE12 rf driver module to the test setup depicted in figure 1.

NOTE

If a -24 volt de power supply is not available, it may be replaced with a de power supply which provides any voltage from -10 volts de to -70 volts dc. If any other voltage is used, the amplitude of the 'rf drive' waveform on $\mathrm{Pl}-3$ will require correcting to correspond to the voltage of the power supply.
(c) Connect oscilloscope test leads between cathode of diode CR1 (A2Q1 collector) and terminal 2 (ground) of printed circuit board assembly A2. Observe waveform on oscilloscope and adjust oscilloscope time base for approximately six cycles and gain for an amplitude of 2 volts/division.
(d) If waveform in step (c) does not correspond to example in figure 2, the crystal controlled oscillator is defective. Isolate and replace defective component and then repeat step (c).
(e) Connect oscilloscope test leads between end of resistor R7 nearest the handle (A2Q2 collector) and terminal 2 (ground) of printed circuit board assembly A2. Observe waveform on oscilloscope and leave oscilloscope time base and gain at the settings established in step (c).
(f) If waveform in step (e) does not correspond to example in figure 2, buffer amplifier is defective. Isolate and replace defective component and then repeat step (e).
(g) Connect oscilloscope test leads between test point TP1 and terminal 2 (ground) of printed circuit board assembly A2. Observe waveform on oscilloscope leaving oscilloscope time base at the setting established in step (c) and set the gain for an amplitude of 2 volts/division.

Figure 1 Test Setup for NAPEl2 RF Driver Module
(h) If waveform in step (g) does not correspond to example in figure 2, frequency divider A2U1, transistors A2Q3, A2Q4 and/or capacitor C8 is defective. Isolate and replace defective component and then repeat step (g).
(i) Connect oscilloscope test leads between the anode of diode AlCR1 (rf drive on Pl-3) ground lug of output coaxial cable shield. Observe waveform on oscilloscope leaving oscilloscope time base at the setting established in step (c) and setting the gain as appropriate for the negative de voltage applied to P1-5.
(j) If waveform in step (i) does not correspond to example in figure 2, a component in the rf drive stage is defective. Isolate and replace defective component using procedures described in paragraph 5.4 for power MOSFETs AIQ1/A1Q2 and then repeat step (i).
(k) Connect a frequency counter between TPl and terminal 2 (ground) of printed circuit board assembly A2.
(1) Adjust capacitor A2C4 for the precise desired carrier frquency indication on the frequency counter. If unable to attain desired frequency, check the oscillator crystal and then the value of the components associated with crystal controlled oscillator.
5.4 RESISTANCE MEASUREMENT OF POWER MOSFETS: Isolate defective power MOSFETS by performing a resistance measurement of each device as follows:

NOTE
The power MOSFETS can be checked while still mechanically mounted, provided their source and gate leads have been electrically isolated.
(a) Electrically isolate a power MOSFET by disconnecting the wiring and comonent leads from its source and gate leads.
(b) Measure the resistance between gate and source using an ohmmeter. Resistance reading should be infinity.
(c) Ensure power MOSFET is turned off by momentarily shorting source and gate leads.

(d) Measure forward source/drain resistance ensuring the ohmmeter's negative lead is on the drain. Resistance reading should be the same as the forward resistance of a diode.
(e) Measure reverse source/drain resistance ensuring the ohmmeter's positive lead is on the drain. Resistance reading should be infinity.
(f) Turn power MOSFET on by forward biasing gate/source junction (connect ohmmeter's positive lead to gate and negative lead to source).
(g) Measure source/drain resistance. Resistance reading should be less than one ohm.
(h) Power MOSFETs that meet the requirements of steps (a) thru (g) are acceptable.
(i) Reconnect the wiring to the source and gate leads of each power MOSFET.

REPAIR

6. Replace any component or wiring which does not meet the requirements of the visual inspection, ensuring leads of replacement wiring and passive components, are kept to the shortest length possible without causing mechanical stress to component or lead. Replace power MOSFETs as follows:

NOTE
Refer to table 2 for interconnecting wiring information and to figure 4 for additional wiring information and assembly detail of the rf driver module.
(a) Gain access to the underside of rf drive assembly Al by removing four screws and four lock washers, one of each from each corner, and then carefully turning the assembly upside down, ensuring interconnecting wiring is not damaged.
(b) Disconnect wiring and component leads from the gate and source leads of the power MOSFET(s) to be removed.
(c) Remove and retain power MOSFET fastening hardware and then extract the power MOSFET.
(d) If power MOSFET AIQ1 is to be replaced, remove insulating tubing from its gate and source leads and install them on the gate and source leads of the replacement power MOSFET.
(e) If power MOSFET AlQ2 is to be replaced, verify the insulator between the power MOSFET and the metal plate is in place, is free from damage and is coated with thermal compound. If necessary, apply a thin coat of thermal compound to both sides of insulator under replacement power MOSFET A1Q2, ensuring the thermal compound is free of foreign objects.
(f) If power MOSFET AIQ2 is to be replaced, verify the insulator on the component side of rf drive assembly Al is free from damage, paying particular attention to the raised shoulders which extend into the mounting holes in the metal plate.
(g) Position the insulators referred to in steps (e) and (f) on the appropriate side of the metal plate, where power MOSFET A1Q2 will be installed, ensuring lead and mounting holes are properly aligned.
(h) Install the power MOSFET and secure using fastening hardware removed in step (c), ensuring the terminal lugs which were originally secured by the fastening hardware have been reinstalled correctly.
(i) Connect wiring and component leads, which were removed in step (b), to gate and source leads of power MOSFET.
(j) Install rf drive assembly Al in the module using four screws and lock washers removed in step (a), ensuring rf output coaxial cable shield ground lug and the ground lug on the wire from P1-2 are reinstalled and that interconnecting wiring is not pinched or strained.

Table 1-Test Equipment

NOMENCLATURE	PART, MODEL, OR TYPE NUMBER (EQUIVALENTS MAY BE USED)
Digital Multimeter	$31 / 2$ digit, ac and dc volts, ohms and amps, $\pm 0.5 \%$ accuracy. Beckman 3010
Oscilloscope	15 MHz. Tektronics Model T922
15 Vdc Power Supply	15 Volts 1 Amp
24 Vdc Power Supply	24 Volts 1 Amp
Frequency Counter	5 mpm up to 10 MHz, Fluke 1900A

Table 2 Wiring List - NAPEl2 RF Driver Module

SOURCE	DESTIN ATIO N			SIZE	FUNCTION
P1-1	A2-1	1	White	22	
Pl-3	Al-Q1 Source	2	Core	RG174/U	(WE37)
Pl-4	Ground	-	Shield		
P1-5	F2-1	3	Blue	22	
P1-6	F1-1	4	Red	22	
Pl-2	A2-2	5	Black	22	
TP1	A2-6	6	White	22	
TP2	Al-R2	7	Blue	22	
TP3	A2-3	8	White	22	
Junction L1/C2	A2-5	9	Red	22	
Tl-1	A2-4	-	-		
Tl-2	Gnd lug near A2Q4	-	-		
Pl-2	Gnd lug near Fl	-	-		

CRYSTAL OSCILLATOR
Frequency $2 / 4 \times$ Carrier

A2Q1 Collector

2 volts/division
Scale centered at +14 Vdc

BUFFER AMPLIFIER OUTPUT
Frequency $2 / 4 \times$ Carrier

A2Q2 Collector

2 volts/division
Scale centered at +8 Vdc

FREQUENCY DIVIDER'S OUTPUT
Carrier Frequency

Divide-by-2/Divide-by-4 Link

2 volts/division
Scale centered at +8 Vdc

Figure 2 Waveforms - NAPEl2 RF Driver Module (Sheet I)

RF DRIVE INPUT
Carrier Frequency

Test Point TPl

2 volts/division
Scale centered at 0 Vdc

RF DRIVE OUTPUT

Carrier frequency switching between negative voltage and ground

Pl-3
Scale centered at 0 Vdc Amplitude dependent on negative voltage level applied to Pl-5.

Figure 2 Waveforms - NAPEl2 RF Driver Module (Sheet 2)

Table 3 Reference Designation Index - NAPEI2 RF Driver Module

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	NAME OF PART AND DESCRIPTION	NAUTEL'S PART NO.	$\begin{gathered} \text { JAN, MIL } \\ \text { OR } \\ \text { MFR PART NO. } \end{gathered}$	$\begin{aligned} & \text { (OEM) } \\ & \text { MFR } \\ & \text { CODE } \end{aligned}$
-	RF Driver Module	NAPE12	139-3002	37338
Al	RF Drive Assembly	139-3008	139-3008	37338
AlCl	Capacitor, Ceramic, 0.luF 10\%, 100V	CCG07	CKR06BX104KL	56289
AlC2	Capacitor, Ceramic, 0.1uF 10\%, 100V	CCG07	CKR06BX104KL	56289
AlC3	Capacitor, Plastic, 1.0uF 10\%, 100V	CNP 11	MFP1W1-10	14655
AlC4	Capacitor, Tantalum, 6.8 uF 10\%, 35V	CCP19	CSR13F685KM	56289
AlC5	Capacitor, Ceramic, $0.1 \mathrm{uF} 10 \%$, 100 V	CCG07	CKR06BX 104KL	56289
AICR1	Diode, Schottky Rectifier, 4.5A	QL10	50 SQ 100	81483
AlCR2	Diode, Schottky Rectifier, 4.5A	QL10	50 SQ 100	81483
Alfi	Fuse, 0.25 Amp, Slow Blow	FB11	323.250	75915
A AlF2	Fuse, 2 Amp, Slow Blow	FB25	MDL-250V-2A	71400
B AlF2	Fuse, 1/2 Amp, Slow Blow	FB13	323.500	75915
Allil	Ferrite Bead	LX16	11-622-B	33062
AlL2	Inductor	139-3036	139-3036	37338
AlQ 1	Transistor, Field Effect, N Channel	QA04	IRF 130	81483
Alq2	Transistor, Field Effect, N Channel	QA04	IRF130	81483
- AlR1	Resistor, Wirewound, 1.0 ohms, $5 \% 15 \mathrm{~W}$	RSO5	HLM15-1.0 Ohms -5\%	35005
AlR2	Resistor, Film, 10K ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP13	RL20S103G	36002
AlR3	Resistor, Film, 0.39 ohms, 5\% 1/2W	RP17	A31-0.39 Ohms-5\%	36002
Alt 1	Trans former	139-3013	139-3013	37338
AIXF1	Fuse Block, 2-pole	FA25	357002	75915
A2	RF Oscillator PCB Assembly	139-3011	139-3011	37338
A 2 Cl	Capacitor, Ceramic, 0.01uF 10\%, 100V	CCG04	CKR05BX103KL	56289
A2C2	Capacitor, Ceramic, 0.01 UF 10\%, 100V	CCG04	CKR05BX103KL	56289
A2C3	Capacitor, Mica, 180pF $2 \%, 500 \mathrm{~V}$	CB28	CM05FD181G03	14655
A2C4	Capacitor, Variable, $0.8-16 \mathrm{pF}$	CY18	527-000	72982
A2C5	Capacitor, Mica, 47pF 2\%, 500 V	CB21	CM05ED470G03	14655
A2C6	Capacitor, Mica, 1000pF 2\%, 500V	CB37	CM06FDI02G03	14655
A2C7	Capacitor, Ceramic, $0.01 \mathrm{FF} 10 \%, 100 \mathrm{~V}$	CCG04	CKR05BX103KL	56289
A2C8	Capacitor, Ceramic, 0.1 l F 10\%, 100V	CCG07	CKR06BX104KL	56289
A2CR1	Diode	QK09	1 N6263	50434
A2CR2	Diode	QAP29	1N4938	01295
A2CR3	Diode	QAP29	1N4938	01295
A2L1	Ferrite Bead	LX16	11-622-B	33062
A2L2	Inductor, Weeductor, 1000 uH	LAP39	SWD1000	00213
A201	Transistor, NPN	QAP06	2N2222	04713
A2Q2	Transistor, NPN	QAP06	2N2222	04713
A2Q3	Transistor, NPN	QAP05	2N2219	04713
A2Q4	Transistor, PNP	QAP08	2N2905	04713
A2R1	Resistor, Film, 1800 ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP 10	RL20S182G	36002
A2R2	Resistor, Film, 8200 ohms, 2% 1/2W	RD06	RL20S822G	36002
A2R3	Resistor, Film, 1000 ohms, 2\% 1/2W	RAP09	RL20S102G	36002
A2R4	Resistor, Film, 180 ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP06	RL20S181G	36002
A2R5	Resistor, Film, 27 K ohms, $2 \% 1 / 2 \mathrm{~W}$	RD12	RL20S273G	36002
A2R6	Resistor, Film, 1000 ohms, 2% 1/2W	RAP09	RL20S102G	36002
A2R7	Resistor, Film, 1800 ohms, 2% 1/2W	RAP 10	RL20S182G	36002
A2R8	Resistor, Film, 100 ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP05	RL20S101G	36002

Table 3 Reference Designation Index - NAPE12 RF Driver Module (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	NAME OF PART AND DESCRIPTION	NAUTEL'S PART NO.	$\begin{gathered} \text { JAN, MIL } \\ \text { OR } \\ \text { MFR PART NO. } \end{gathered}$	$\begin{aligned} & (O E M) \\ & \text { MFR } \\ & \text { CODE } \end{aligned}$
A2R9	Resistor, Film, 10K ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP13	RL20S103G	36002
A2R10	Resistor, Film, 10 K ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP 13	RL20S103G	36002
A2R11	Resistor, Film, 1000 ohms, $2 \% 1 / 2 \mathrm{~W}$	RAP09	RL20S102G	36002
A2U1	IC, Dual Type D Flip Flop	UB15	MC14013BAL	04713
A2XUI	Socket, IC, 14-pin	UCO2	640-357-1	00779
A2Y1	Crystal (Determined by Carrier Freq)	XA19	A061DXA-50	00809
A2XY1	Crystal Socket	BAP39	8000-DG4	91506
P1	Connector, Plug, 6-pin	JD09	P-3306-AB	13150
TP1	Jack, Tip, White	J021	450-4355-1-0319	71279
TP2	Jack, Tip, Violet	J020	450-4355-1-0317	71279
TP3	Jack, Tip, Red	J019	450-4355-1-0312	71279

A in 'Ref Des' column denotes used in NAPEl2 B in 'Ref Des' column denotes used in NAPE12/1

Table 4 Quantities Per Unit Index - NAPE12 RF Driver Module

NAUTEL'S PART NO.	NAME OF PART AND DESCRIPTION	$\begin{gathered} \text { JAN, MIL } \\ \text { OR } \\ \text { MFR PART NO. } \end{gathered}$	$\begin{aligned} & \text { (OEM) } \\ & \text { MFR } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { IDENT } \\ & \text { PARTS } \end{aligned}$
NAPE 12	RF Driver Module	139-3002	37338	REF
139-3008	RF Drive Assembly	139-3008	37338	
139-3011	RF Oscillator PCB Assembly	139-3011	37338	1
139-3013	Transformer	139-3013	37338	1
139-3036	Inductor	139-3036	37338	
BAP39	Crystal Socket	8000-DG4	91506	1
CB21	Capacitor, Mica, 47pF 2\%, 500V	CM05ED470G03	14655	1
CB28	Capacitor, Mica, 180pF 2\%, 500 V	CM05FDI81G03	14655	1
CB37	Capacitor, Mica, 1000pF 2\%, 500V	CM06FD102G03	14655	1
CCG04	Capacitor, Ceramic, 0.01 uF 10\%, 100V	CKR05BX103KL	56289	3
CCG07	Capacitor, Ceramic, $0.1 \mathrm{uF} 10 \%$, 100 V	CKR06BX104KL	56289	4
CCP19	Capacitor, Tantalum, $6.8 \mathrm{uF} 10 \%$, 35V	CSR13F685KM	56289	1
CNP11	Capacitor, Plastic, 1.0uF 10\%, 100V	MFP1 W1-10	14655	1
CY18	Capacitor, Variable, 0.8-16pF	527-000	72982	1
FA25	Fuse Block, 2-pole	357002	75915	1
FB11	Fuse, 0.25 Amp, Slow Blow	323.250	75915	1
FB13	Fuse, 1/2 Amp, slow Blow	323.500	75915	1
FB25	Fuse, 2 Amp, Slow Blow	MDL-250V-2A	71400	1
J009	Connector, Plug, 6-pin	P-3306-AB	13150	1
J019	Jack, Tip, Red	450-4355-1-0312	71279	1
J020	Jack, Tip, Violet	450-4355-1-0317	71279	1
J021	Jack, Tip, White	450-4355-1-0319	71279	1
LAP39	Inductor, Weeductor, 1000 uH	SWD1000	00213	1
LX16	Ferrite Bead	11-622-B	33062	2
QA04	Transistor, Field Effect, N Channel	IRF 130	81483	2
QAP05	Transistor, NPN	2N2219	04713	1
QAP06	Transistor, NPN	2N2222	04713	2
QAP08	Transistor, PNP	2N2905	04713	1
QAP29	Diode	1 N4938	01295	2
QK09	Diode	1 N6263	50434	1
QL10	Diode	50 SQ 100	81483	2
RAP05	Resistor, Film, 100 ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S101G	36002	,
RAP06	Resistor, Film, 180 ohms, 2% 1/2W	RL20S181G	36002	1
RAP09	Resistor, Film, 1000 ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S102G	36002	3
RAP10	Resistor, Film, 1800 ohms, 2% 1/2W	RL20S182G	36002	2
RAP 13	Resistor, Film, 10 K ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S103G	36002	3
RD06	Resistor, Film, 8200 ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S822G	36002	1
RO12	Resistor, Film, 27 K ohms, $2 \% 1 / 2 \mathrm{~W}$	RL20S273G	36002	1
RP 17	Resistor, Film, 0.39 ohms, $5 \% 1 / 2 \mathrm{~W}$	A31-0.39 0hms-5\%	36002	,
RS05	Resistor, Wirewound, 1.0 ohms, 5\% 15W	HLM15-1.0 Ohms-5\%	35005	1
UB15	IC, Dual Type D Flip Flop	MC14013BAL	04713	1
UCO2	Socket, IC, 14-pin	640-357-1	00779	1
XA19	Crystal (Determined by Carrier Freq)	A061DXA-50	00809	1

A in 'Total Ident Parts' column denotes used in NAPE12 only
B in 'Total Ident Parts' column denotes used in NAPE12/1 only

Figure 3 Electrical Schematic - NAPE12 RF Driver Module

Figure 4 Assembly Detail - NAPE12 RF Driver Module

Figure 5 Assembly Detail - NAPE12/1 RF Driver Module

